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1. Introduction

Colorectal cancer (CRC) is one of the most common malignancies among the
general population, accounting for 10% of all diagnosed cancers. CRC represents
the third most frequent malignant tumor in men while is even only the second in
women after breast cancer. In 2020 its estimated incidence has been 19:100.0005

worldwide, while the mortality rate represents the 9.4% of all cancer-related
deaths [1]. Over the past decades, the scientific world witnessed a slight decrease
in CRC’s incidence and mortality, supposedly related to both implementations
of mass screening programs and subsequent earlier recognition of the disease
at initial stages. Hemoglobin and DNA alteration detected in stool samples10

along with endoscopy is the most diffused and recommended screening test in
the general population. However, they are burdened by quite low sensitivity
and invasiveness, respectively [2]. For this reason, the eventual development of
new minimally invasive, highly sensitive, and specific approaches has a crucial
role in aiming for recognition of the disease at the earliest stage possible.15
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Artificial Intelligence introduced relevant perspectives of the solution, espe-
cially through supervised machine learning aimed at approximating unknown
patterns among relevant data. Significant parameters can efficiently and reliably
allow inferences about patients’ health status; pattern recognition in colorectal
cancer diagnosis is in continuously considerable expansion [3, 4, 5, 6].20

In this study, we propose a further improvement of B-index [7], a mathe-
matical tool based on Artificial Neural Networks and extended reality for non-
invasive early colorectal cancer diagnosis. We faced the prediction problem of
cancer presence and staging classification by combining the outcomes provided
by multiple models through an ensemble learning, i.e. the majority voting, ap-25

proach [8]. We performed a comparative analysis of the performances, as binary
and staging predictors, provided by four machine learning models: RF (Ran-
dom Forest) [9], XGB (XGBoost) [10], SVM (Support Vector Machine) [11],
and ANN (Artificial Neural Network) [12].

2. Materials and methods30

2.1. Serum biomarkers

Carcinoembryonic Antigen (CEA) [13, 14, 15, 16, 17, 18], Ceruloplasmin [19],
Haptoglobin [20, 21, 22], Transferrin [23, 24, 25], Tissue Polypeptide Antigen
(TPA) [26, 27], CA 19.9 [28, 29, 30], CA 72.4 [31, 32, 33], C-reactive Pro-
tein (CRP) [34, 35, 36], CA 50 [28, 37], C4 Complement [38, 39], CA 12535

[40, 41, 42], Alpha-1-Antitrypsin [20, 43], Alpha-2-Macroglobulin [44, 39, 45],
Ferritin [24, 46, 47, 48], Retinol Binding Protein (RBP) [49, 50, 51], Alpha-1-
Acid Glycoprotein [44, 52], Complement C3 [39, 53].

2.2. Dataset

The dataset was built thanks to the participation, between January 2011 and40

January 2013, of 345 patients (97 found healthy and 248 affected by colorectal
cancer) enrolled at several Surgical Departments in Italy. All blood samples were
collected preoperatively by venipuncture, 24 hours after hospital admission to
reduce psychological stress-induced modification of tested serum parameters.
All patients underwent preoperative evaluation including physical examination,45

colorectal endoscopy, histopathological analysis on biopsies, contrast total body
CT scan. Pathological TNM staging was established on surgical specimens
according to American Joint Committee on Cancer staging system after CRC
surgical excision. Patients were subsequently divided into 4 subclasses according
to disease stage: 74 patients classified as stage I, 61 patients belonging to stage50

II, 76 patients in stage III while stage IV was made up of 37 patients. Ninety-
seven healthy controls were selected regardless of sex and age, ranging between
45 and 80 years old. The dosage of the serum parameters described in Section 2.1
was evaluated in all participants’ blood samples. Evaluation of mean, STDEV,
and t-Student was assessed in the different subgroups: CRC patients (stage I to55

IV) and participants in apparent good health.
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2.3. Explanatory data analysis

In Figure 1 we show the two principal components of the dataset by em-
ploying PCA (Principal Components Analysis) [54], which is an unsupervised
approach that permits to reduce the dimensionality of the feature space. The60

two components highlighted in the graph represent the main components of
the observation space, and therefore the dimensions, normalized for having zero
mean, with the greatest variance in the dataset.

We notice that the observations accumulate more in a precise point of space
and that they expand slightly along the diagonals. The expansion that concerns65

the negative values of the first main component (PCA 1) presents more negative
cases (no CRC presence), while the one that concerns the positive values of
the aforementioned main component presents most of the positive cases (CRC
presence). The expansion of positive cases highlights some outliers that are
close and others very far from the most significant density zone.70

Figure 1: Bidimensional visualization of the original dataset through PCA for the binary
problem. Green and red points represent negative and positive patients, respectively.

In Figure 2 we show the Box and Whisker plots of the dataset distribution
for the binary problem, in which each box represents upper and lower quartiles
and outliers are displayed as individual points. Biomarkers that present greater
dispersion are Haptoglobin, Transferrin, Tissue Polypeptide Antigen, Alpha-1-
Antitrypsin, Alpha-2-Macroglobulin, Ferritin, Alpha-1-Acid Glycoprotein, and75

Complement C3, both for positive and negative patients. Each parameter of
the input space has a significant number of outliers, most of which occur in the
case of positive patients. For negative patients the outliers are all relatively
close to the whiskers, except for Tissue Polypeptide Antigen which presents two
observations very far from the interquartile range, while for positive patients we80

find occurrences of outliers very far from the relative confidence intervals; for the
Tissue Polypeptide Antigen, e.g., we verify a wider diffusion of the observations
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beyond the box range. These aspects suggest that the observations related to
negative patients are more adequate than those belonging to negative patients,
since in the first case, even if the amount of data is limited, the distribution85

of the markers is defined more densely in the proximity of the whiskers. Thus,
the distribution defined by the interquartile ranges and the relative medians is
likely to the true distribution of the negatives. The high dispersion of outliers in
the case of positive patients shows a high degree of variance in the distribution
and, consequently, suggests the need to acquire more observations.90

CE
A

CE
R

AP
T

TR
A

TP
A

CA
19

-9

CA
72

-4

CR
P

CA
50 C4

CA
12

5

A1
AN

T

A2
M

FE
R

RB
P

GL
I

C3

0

200

400

600

800

1000

CE
A

CE
R

AP
T

TR
A

TP
A

CA
19

-9

CA
72

-4

CR
P

CA
50 C4

CA
12

5

A1
AN

T

A2
M

FE
R

RB
P

GL
I

C3

0

200

400

600

800

Figure 2: Features distribution related to the negative (n=97) and positive (n=248) patients.

Similar to the binary, Figures 3 and 4 show the Box and Whisker plots of the
dataset distribution for the staging problem. Biomarkers’ distribution for stage I
presents greater dispersion against the other stages, but its outliers occur more
in the proximity of the whiskers. Stages II and III have narrower confidence
intervals and, except for Ferritin, they involve, similarly to stage I, all outliers95

in the proximity of the whiskers. Stage IV, on the other hand, while presenting
less dispersive confidence intervals, has a large number of outliers far from the
interquartile ranges, especially as regards CA19-9, which for stage I, II, and III
assumes values lower than 300, but which for the IV it exceeds the limit of 800.
Another interesting aspect is that the Ferritin assumes values lower than 400 in100

the case of stages I and IV, but values higher than the limit of 600 for stages II
and III. Thus, the high dispersion of outliers for the positives is most affected
by the variance associated with stage IV.

The elimination of the outliers does not represent a convenient choice both
for the binary and staging decisions, as it would eliminate useful information.105

However, as we will see later, it will be possible, through an ensemble learning
approach, to reduce the variance introduced by the decisions concerning positive
patients without removing outliers.

2.4. Ensemble learning

Ensemble learning is a statistics and machine learning approach that com-110

bines multiple learners to obtain better predictive performances than those
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Figure 3: Features distribution related to the positive patients for stages I (n=74), on the left,
and II (n=61), on the right.
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Figure 4: Features distribution related to the positive patients in the training set for stages
III (n=76), on the left, and IV (n=37), on the right.

which can be obtained by deploying the combined models individually. Since
any classification error is described by the bias-variance trade-off, i.e. the bal-
ance between the accuracy and the precision of the classifier when trained on
different sets [55], an ensemble model allows to reduce a learner’s variance with-115

out increasing the bias, i.e. the bagging, and a learner’s bias without increasing
the variance, i.e. the boosting.

In general, ensemble learning deals with the training of several weak learners,
i.e. which all have a high level of variance, as in the case of bagging, or bias, as
in the case of boosting, the combination of which generates a strong learner that120

provides better performance than those achieved by each of the combined models
taken individually. In bagging, the predictions of several weak learners with low
bias but high variance are combined to obtain a new model characterized by a
lower variance. In boosting, the predictions of several weak learners with a low
variance but high variance are combined to obtain a new model characterized by125
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a lower bias. Another significant ensemble approach is stacking, which consists
of combining multiple model predictions through a meta-model, i.e. another
learner, instead of a deterministic process.

The ensemble approach can be considered as the translation in terms of
machine learning of the “unity is strength” concept. Ensemble learning can also130

be adapted, as we will see in Section 3.2, to combine multiple strong learners
to obtain better performances. In the present study, we adopt the majority
voting, which is a bagging approach consisting of performing the average of the
predictions provided by multiple learners that, in this work, are trained on a
common dataset.135

2.5. Feature selection

Feature selection was carried out through the evaluation of the significance
of the input dimensions after the training phase of Random Forest and XGBoost
models.

The importance of a feature is evaluated as the decrease of the impurity140

related to a given node, weighted by the probability of reaching that same node
(the number of samples that reach the node divided by the total number of
samples). This metric is computed by the Gini Importance, also called Mean
Decrease in Impurity (MDI), which counts the times a feature is involved in
splitting a node, weighted by the number of samples it splits [56]. For a binary145

tree, the importance of the i-th feature on a decision tree is defined as:

FIi =

∑
j∈Si,j

NIj∑
k∈K NIk

(1)

where Si,j is the number of times the i-th feature is involved in splitting the
j-th node of the tree, K is the total number of the nodes of the tree, and NIj
is the importance of the j-th node, which is defined as:

NIj = wjCj − wL(j)CL(j) − wR(j)CR(j) (2)

where wj is the weighted number of samples reaching the j-th node, Cj is the150

impurity value of the j-th node; L(j) and R(j) are the child nodes, respectively,
from left and right split on the j-th node [57]. A high value of the FIi score
indicates a high significance for a given feature.

2.6. Basic and starting solution: B-index

The deployed predictive model was an Artificial Neural Network, developed155

with simultaneous evaluation of all the serum proteins and antigens tested [26,
58, 59, 32], to distinguish healthy controls from colorectal cancer patients. The
classes 0 (negative outcome) and 1 (positive result) were the two possible output
values; a positive response identified a patient who probably incurred one of the
four TNM stages (I, II, III, and IV). The input dimensions were all the serum160

levels of the above 17 critical biomarkers.
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To better evaluate the results achieved by the predictive model, new sets
of samples were generated by performing an extended reality simulation whose
deployed algorithm was characterized by the following properties.

i) Data are generated in the function of the TNM classes to avoid admixtures.165

In particular, each parameter varies in the range [0, 99] of real numbers.

ii) Input parameters are fuzzified through the analysis of the entire distribution
of the original samples; variation ranges divided into the five classes: i) low,
i.e. range [0, 20[; ii) below average, i.e. range [20, 40[; iii) average, i.e. range
[40, 60[; iv) above average, i.e. range [60, 80[; v) high, i.e. range [80, 99].170

iii) Each original profile of parameters is remapped into a set of integers on the
above fuzzy set, i.e., into the range [1, 5] of integers.

iv) All possible configurations of profiles are generated according to the related
TNM class. The transferrin, ferritin, C3, and C4 dimensions are not in-
volved in the recombination process but remapped with the original class175

values.

v) After 400,000 cases for each TNM class are generated, the fuzzified pa-
rameters’ tuples are converted into real values using random inter-class
generation. For example, in case a parameter has a score of 4, a random
number in the [60, 80] range is generated, e.g., 68.75.180

The advantage of the fuzzification process also reduces the computational
cost of the extended reality procedure. Bounds on the generation of extended
data were set to ensure a fully representative fidelity of the original dataset. The
quantity of generated extended data was two million samples. In Figure 5, we
show the visualization of the real and extended data through PCA (Principal185

Components Analysis) related to the positive CRC patients.

a) Real PCA components. b) Extended PCA components.

Figure 5: Visualization of real (a) and extended (b) PCA components related to positive
CRC patients. Blue, green, red, and gray points represent I, II, III, and IV TNM stages,
respectively.

Samples for model training, validation, and testing were chosen by con-
sidering data related to all the possible TNM outcomes. The data structure
was characterized by the association between serum biomarkers’ values and the
TNM stage outcome. Among all the 345 participants, 51 were chosen for the190
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validation set, while the authors generated two million samples (500k for each
TNM class) for the test set through an extended reality procedure. The goal
of testing the model on extended data was to obtain a larger dataset than the
original one to simulate tests on a huge amount of participants. The tests on
extended data permitted to study of the differentiation properties which are not195

visible in low statistics, with the advantage of having the same general prop-
erties as the original dataset. The generated data were computed according to
the TNM classes, the fuzzification of diagnostic parameters, and the remapping
of correspondent values for each profile in the original dataset. Given the TNM,
all possible combinations of the 17 input dimensions were created through con-200

ditioned stochastic generation. Model’s performances were the following:

• Accuracy on real data (n=51): 80.08%;

• Accuracy on extended data (n=2M): 91.11%;

• False positives on real data (n=51): 33.30%;

• False positives on extended data (n=2M): 47.20%;205

• False negatives on real data (n=51): 10.20%;

• False negatives on extended data (n=2M): 3.00%;

• Sensitivity on real data (n=51): 89.80%;

• Sensitivity on extended data (n=2M): 99.97%;

• Specificity on real data (n=51): 66.70%;210

• Specificity on extended data (n=2M): 76.42%.

The study obtained good results, but it faced the prediction of cancer pres-
ence only. As we will see, the improved solution enforced the previous model
and also faced the TNM staging prediction issue by taking advance of the very
same extended reality simulation.215

2.7. Proposed improving solution: BH-index

Based on the previous study, we have built an improvement system whose
purpose is to diagnose the presence of colorectal cancer and the related TNM
stage. The proposed system is divided into the following chores:

• Binary predictor: it provides the prediction regarding the probability of220

absence/presence of cancer;

• Staging predictor: it provides, based on the binary predictor outcome, the
prediction regarding the cancer degree of staging (I, II, III, IV).
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As shown in Figure 6, the binary predictor considers the 17 biomarkers’
values of a given patient and outputs one of the two following states: 1 in case225

of significant cancer presence probability and 0 in the opposite case. The staging
predictor takes as input the same biomarkers acquired by the binary predictor
and outputs one of the following states: 1, 2, 3, and 4 in case of the significant
relative probability of incurring, respectively, in TNM stages I, II, III, and IV.
The activation of the computation related to the staging predictor is asserted230

only when the binary predictor returns a positive outcome for a given input of
biomarkers.

Figure 6: Representation of the binary and staging predictors.

We performed a comparative analysis of the performances, as binary and
staging predictors, related to RF (Random Forest), XGB (XGBoost), SVM,
and ANN models. The choice of training a set of models of different types also235

allows to perform the ensemble, i.e., as described in Section 2.3, to combine the
relative predictions to obtain greater performances.

The first experimentation, as described in Section 3.1, was conducted by
training the aforementioned models in a balanced way, i.e. with the same dis-
tribution of positives and negatives in both training and validation sets. In this240

way, we allow the comparison of the binary predictor with the related works and
the evaluation of the most significant biomarkers. The second experimentation,
as described in Section 3.2, was conducted by training the same chosen models
as above in a positive-oriented unbalanced way, i.e. with a different ratio of
positives and negatives in the training and validation sets, and, subsequently,245

by combining, through an ensemble voting mechanism, the predictions of the
models which provided us the better performances. In this way, we strengthen
the binary predictor performances by minimizing false negatives and reducing
the noise in the prediction to increase the overall success factor.

In both the experiments, the dataset was the same available for the pro-250

dromic study, i.e. the one described in Section 2.2. Training and validation
processes were based on the real samples, while the test was performed based
on the samples generated by the extended reality approach. Regarding the ex-
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perimentation conducted with balanced sets, 276, 69, and 2 million samples
were allocated, respectively, to the training, validation, and test sets; Regard-255

ing the experimentation conducted with positive-oriented unbalanced sets, 294,
51, and 2 million samples were allocated to the training, validation, and test
sets. Regarding accuracy metrics, the validation score indicates the degree of
models’ generalization on the set of real data and its accuracy in predicting the
patient’s status. The test score suggests the model’s behavior, during the sim-260

ulation phase, on configurations of highly variant input parameters. These two
metrics provide an overall evaluation of the models’ behavior when predicting
outcomes for both real and simulated patients.

2.8. Performance metrics

Models performance is evaluated regarding the validation and the test sets,265

respectively, for real and extended data. We evaluate the models employing
the accuracy metric for the validation and test sets. As for the best performing
models, we take into consideration also the sensitivity and specificity metrics for
the binary predictor, while for the staging predictor we evaluate the confusion
matrix.270

Considering a binary decision problem in which the two possible outcomes
are positive/negative, we provide the following definitions: a true positive (TP)
is an outcome where the model correctly predicts the positive class; a true neg-
ative (TN) is an outcome where the model correctly predicts the negative class;
a false positive (FP) is an outcome where the model incorrectly predicts the275

positive class; a false negative (FN) is an outcome where the model incorrectly
predicts the negative class. The expressions of the accuracy, sensitivity, and
specificity scores of a model are:

Accuracy =
TP + TN

TP + FP + FN + TN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP
.

Accuracy represents the number of correctly predicted data points out of all
the data points, i.e. the number of correct predictions out of the total number of280

predictions performed within a test; sensitivity is a measure of the proportion
of actual positive cases that got predicted as positive (or true positive); this
can also be represented in the form of a True Positive Rate (TPR). Specificity
is defined as the proportion of the actual negatives which got predicted as the
negative (or true negative); this proportion could also be called a True Negative285

Rate (TNR).
Regarding the staging problem, we use the confusion matrix, which is, as

shown in Table 1, a tabular way of visualizing the performance of a multi-
class prediction model. Each entry in a confusion matrix denotes the number
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of predictions made by the model where it classifies the classes correctly or290

incorrectly. In the following sections, we will employ its normalized version,
which consists of dividing each element by the total number of data points
whose actual class is indexed by the row.

1 2 3 4
1 N1|1 N2|1 N3|1 N4|1
2 N1|2 N2|2 N3|2 N4|2
3 N1|3 N2|3 N3|3 N4|3
4 N1|4 N2|4 N3|4 N4|4

Table 1: Example of a confusion matrix for a multi-class decision problem in which the four
possible outcomes are stages I, II, III, and IV, respectively enumerated as 1, 2, 3, and 4. The
generic element NCi|Cj

denotes the number of times the model predicts class Ci when the

actual class is Cj .

3. Results and discussion

3.1. Results with balanced sets295

In this Section, we discuss the results achieved with the training based on
balanced datasets, identifying the biomarkers that contribute most significantly
to the decision. In Sections 3.1.1 and 3.1.2, we show the results achieved for
binary and staging predictors, respectively.

3.1.1. Binary predictor results300

As can be seen in Table 2, the binary predictors deployed with RF and
XGB generalized the validation better than the test set, while SVM and ANN
models generalized the test better than the validation set. By performing feature
selection with the approach described in Section 2.4 for the binary problem
concerning RF and XGB, we encountered, as shown in Figure 7, that the most305

significant markers are Ceruloplasmin, which is highly significant for both the
algorithms, and Alpha-2-Macroglobulin, which is more significant for RF than
for XGB. The other three highly significant markers are Transferrin, CA 72.4,
and C-reactive Protein; the former and the second are more decisive for XGB
than for RF, while the latter is not relevant for RF but highly decisive for310

XGB. For both the algorithms, the least significant markers are CA-50 and A-
1-Antitrypsin; for this reason, we have carried out a new training of the models
by resizing the feature space in this sense.

Training based on the results of the features selection (all features except
CA 50 and A-1-Antitrypsin) show, similarly to the case of training based on315

all features, that RF and XGB generalized the validation better than the test
set, while SVM and ANN generalized the test better than the validation set.
We note, however, a slight improvement in the accuracy of XGB and ANN on
the validation set, while we find, on the same set, a worsening of RF and SVM.
Compared to the previous study, we obtained that XGB improves the binary320
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Binary predictor (all features)
Model Train (n) Validation (n) Test (n) Validation acc. (%) Test acc. (%)
RF 276 69 2M 84.05 57.06
XGB 276 69 2M 90.00 71.92
SVM 276 69 2M 76.81 99.55
ANN 276 69 2M 76.81 86.89

Binary predictor (all features except CA 50 and A-1-Antitrypsin)
Model Train (n) Validation (n) Test (n) Validation acc. (%) Test acc. (%)
RF 276 69 2M 82.60 57.96
XGB 276 69 2M 91.30 71.70
SVM 276 69 2M 72.46 95.27
ANN 276 69 2M 79.71 91.31

Table 2: Results for the binary problem with balanced sets. Train with 199 positives and 78
negatives; test with 51 positives and 19 negatives.

prediction of 11.22% on real data. The details related to the performance are
the following:

• Accuracy on real data (n=69): 91.30%;

• Accuracy on extended data (n=2M): 71.70%;

• False positives on real data (n=69): 26.31%;325

• False positives on extended data (n=2M): 9.12%;

• False negatives on real data (n=69): 0.02%;

• False negatives on extended data (n=2M): 33.09%;

• Sensitivity on real data (n=69): 90.00%;

• Sensitivity on extended data (n=2M): 66.90%;330

• Specificity on real data (n=69): 93.33%;

• Specificity on extended data (n=2M): 90.87%.

A comparison with the previous study reveals that false positives and false
negatives have, respectively, decreased by 38.08% and increased by 30.09% on
extended data; sensitivity decreased by 33.07%, and specificity increased by335

14.45% on extended data. Regarding real data, false positives and false negatives
have decreased by 6.99% and 10.18%; sensitivity and specificity have increased
by 0.2% and 26.63%.

3.1.2. Staging predictor results

Table 3 shows the staging problem results by training the same four models340

used for the binary predictor. It can be noticed that, without feature selection,
the real data were better generalized by RF and XGB and that, by deleting
CA 50 and A-1-Antitrypsin, the model that reached the best accuracy score

12



Figure 7: Feature importance related to RF and XGB for the binary problem.

Staging predictor (all features)
Model Train (n) Validation (n) Test (n) Validation acc. (%) Test acc. (%)
RF 197 51 2M 58.82 76.16
XGB 197 51 2M 66.66 42.32
SVM 197 51 2M 47.05 37.61
ANN 197 51 2M 45.09 30.78

Staging predictor (all features except CA 50 and A-1-Antitrypsin)
Model Train (n) Validation (n) Test (n) Validation acc. (%) Test acc. (%)
RF 197 51 2M 62.74 45.50
XGB 197 51 2M 66.66 16.57
SVM 197 51 2M 47.05 37.61
ANN 197 51 2M 56.86 38.66

Table 3: Results for the staging problem with balanced sets. Training with 57, 53, 59, and 28
samples for stages I, II, III, and IV, respectively; test with 17, 8, 17, and 9 samples for stages
I, II, III, and IV, respectively.

on real data was XGB. By training the models separately, we deduce that the
maximum achieved accuracy score is 66.66% on real data.345

Unlike the binary, for the staging predictor, we verify that all the biomarkers
are significant for both RF and XGB. We did not encounter further improve-
ments on real data, except for a reduction of the noise in the prediction due
to a general lowering of accuracy related to extended data (especially for RF
and XGB). In Figure 8 we notice that the spectrum of the significance of the350

features generally presents high values, and therefore it is possible to state that
for the staging problem the markers identified in the present study represent a
necessary basis for the decision, suggesting the identification of further features
or the acquisition of more data. In particular, we note that for the staging prob-
lem Carcinoembryonic Antigen and Alpha-1-Acid Glycoprotein are of particular355

importance; the first of these two biomarkers is highly and averagely significant
for RF and XGB, respectively, while the second is relevant for both algorithms.
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The other three highly significant markers are Ceruloplasmin, C-reactive Pro-
tein, and Retinol Binding Protein; the former is decisive both for XGB and RF,
while the second and the latter are more relevant for XGB. For both the algo-360

rithms, the least significant markers are Transferrin and Complement C3. Thus,
we can conclude that the best staging predictor is the XGB model characterized
by the confusion matrices shown in Table 4.

Real data Extended data
1 2 3 4 1 2 3 4

1 0.70 0.12 0.18 0.00 1 0.12 0.86 0.01 0.01
2 0.12 0.62 0.00 0.26 2 0.79 0.08 0.12 0.01
3 0.00 0.18 0.82 0.00 3 0.76 0.08 0.06 0.10
4 0.34 0.00 0.33 0.33 4 0.00 0.00 0.60 0.40

Table 4: Confusion matrices of the model trained with XGB for the staging predictor with
balanced sets on real and extended data. Row and column indices represent, respectively, the
true expected and the predicted outcomes of the model.

Figure 8: Feature importance related to RF and XGB for the staging problem.

The performance related to the staging predictor on real data shows that
stage I is confused to an acceptable level with II and IV, while stage II is confused365

with I and IV. The best score is obtained for stage III, which is confused only
with II. The worst performances are obtained with stage IV, which is often
confused with I, II, and IV. As for the performance concerning the extended
data, the staging predictor confuses almost all the occurrences of stages II and
III with those of stage I, while stage IV is confused only with III.370

3.2. Results with positive-oriented unbalanced sets and majority voting

In this Section, we discuss the results achieved with the training based on
positive-oriented unbalanced datasets by performing dimensionality reduction
through PCA and combining the three best models through a majority voting
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approach. In Sections 3.2.1 and 3.2.2, we show the results achieved for binary375

and staging predictors, respectively.

3.2.1. Binary predictor results

As shown in Table 5, the binary predictors deployed with RF, XGB, and
ANN generalized the validation better than the test set, while the SVM model
generalized suitably both of them. By performing dimensionality reduction380

through PCA, we have reduced the input domain to 3 main components, but
we did not encounter further improvements. Compared to the previous study,
we obtained that XGB improves the binary prediction of 10.11% on real data.
Furthermore, importance weights analysis suggested that all the features, i.e.,
the 17 input biomarkers, are statistically relevant to perform the outcome’s385

prediction.

Binary predictor (all features)
Model Train (n) Validation (n) Test (n) Validation acc. (%) Test acc. (%)
RF 294 51 2M 84.31 57.88
XGB 294 51 2M 90.19 64.21
SVM 294 51 2M 86.27 96.25
ANN 294 51 2M 86.27 73.45

Binary predictor (PCA dimensions, all features)
Model Train (n) Validation (n) Test (n) Validation acc. (%) Test acc. (%)
RF 294 51 2M 74.50 80.00
XGB 294 51 2M 74.50 88.30
SVM 294 51 2M 76.47 88.90
ANN 294 51 2M 74.50 67.82

Table 5: Results for the binary problem with positive-oriented unbalanced sets. Train with
215 positives and 80 negatives; test with 35 positives and 17 negatives.

Further experimentation was performed by adopting ensemble learning, i.e.
combining ANN, SVM, and XGB models without dimensionality reduction.
This combined model provided the binary decision according to the mean value
of the outcomes predicted by the above three models. Results show 98.03% and390

84.63% accuracy scores, respectively, for real and extended data. The details
related to the performance are the following:

• Accuracy on real data (n=51): 98.03%;

• Accuracy on extended data (n=2M): 84.63%;

• False positives on real data (n=51): 7.69%;395

• False positives on extended data (n=2M): 10.50%;

• False negatives on real data (n=51): 0.00%;

• False negatives on extended data (n=2M): 16.57%;

• Sensitivity on real data (n=51): 100.00%;
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• Sensitivity on extended data (n=2M): 57.44%;400

• Specificity on real data (n=51): 92.30%;

• Specificity on extended data (n=2M): 96.94%.

A comparison with the previous study reveals that false positives and false
negatives have, respectively, decreased by 36.7% and 13.57% on extended data;
sensitivity decreased by 42.53% and specificity increased by 20.52% on extended405

data. Regarding real data, false positives and false negatives have decreased by
25.61% and 10.20%; sensitivity and specificity have increased by 10.20% and
25.60%.
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Figure 9: ROC curves of ANN, XGB, SVM and the combined model for the binary problem
with positive-oriented unbalanced sets.

The combined model results in an improvement since higher accuracy on real
data is promising for the diagnosis’s correctness. Furthermore, the decreasing410

accuracy of extended data indicated the simulated evaluation’s relevance as a
measure of the prediction’s noise. From the plot in Figure 9, it is possible to
analyze the trend of the ROC (Receiver Operating Characteristic) curves, which
highlight the relationships, on real data, between TPR (True Positive Rate) and
FPR (False Positive Rate) for the three single models and the combined one.415

It can be seen that the combined model inherits the FPR score from ANN and
XGB, as well as the TPR score from the SVM, resulting in a better generalizing
model. Compared to the SVM-only, the combined model provides much greater
accuracy on real data and improves the B-index performance by 16% against
the previous work.420
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3.2.2. Staging predictor results

Table 6 shows the staging problem results by training the same four models
used for the binary predictor. It can be noticed that, without dimensionality
reduction, the real data were better generalized by RF and ANN and that,
by adopting PCA dimensionality reduction, the model that reached the best425

accuracy score on real data was RF. By training the models separately, we
deduce that the maximum achieved accuracy score is 60% on real data.

Staging predictor (all features)
Model Train (n) Validation (n) Test (n) Validation acc. (%) Test acc. (%)
RF 223 25 2M 44.00 49.15
XGB 223 25 2M 56.00 31.76
SVM 223 25 2M 32.00 24.02
ANN 223 25 2M 44.00 56.41

Staging predictor (PCA dimensions, all features)
Model Train (n) Validation (n) Test (n) Validation acc. (%) Test acc. (%)
RF 223 25 2M 60.00 47.37
XGB 223 25 2M 56.00 37.58
SVM 223 25 2M 44.00 54.51
ANN 223 25 2M 48.00 74.46

Table 6: Results for the staging problem with positive-oriented unbalanced sets. Training
with 71, 52, 69, and 31 samples for stages I, II, III, and IV, respectively; test with 8, 5, 9, and
3 samples for stages I, II, III, and IV, respectively.

Even for the staging predictor, the importance weights analysis verified that
all the input features are significant, but, unlike the binary predictor, the re-
duction of dimensionality via PCA introduced a slight improvement. Figure 5430

in Section 2.2 shows the visualization of the three main components extracted
from the real and the extended datasets composed of patients affected by cancer
in association with the TNM stages.

We note the high complexity of classification due to the significant density
of points present in the plot associated with negative values of component 2.435

It is also noticeable that the data related to a type IV TNM are more distin-
guishable than the others, at least as regards the positive values of the second
PCA component. The presence of outliers related to the IV stage determines,
in the extended dataset, a well-defined decision area isolated from the high-
density section associated with the other TNM stages. This aspect suggests440

that predicting a type IV stage may be more reliable than the different TNM
configurations. This observation, however, represents only a hypothesis since
the amount of real data available for the present study was limited; in fact,
the acquisition of further data in the field could reveal, in the future, different
confidence intervals between the TNM points.445

The combination of the three best models, i.e., RF, XGB, and ANN with
dimensionality reduction, was also performed for the staging by using the same
ensemble voting mechanism used for the binary predictor. The results show
that performances achieved 60% and 64.35% accuracy scores, respectively, on
real and extended data. Thus, the best staging predictor was the combined450

model characterized by the confusion matrices shown in Table 7.
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Real data Extended data
1 2 3 4 1 2 3 4

1 0.75 0.25 0.00 0.00 1 0.96 0.04 0.00 0.00
2 0.00 0.75 0.25 0.00 2 0.96 0.04 0.00 0.00
3 0.00 0.60 0.40 0.00 3 0.00 0.25 0.75 0.00
4 0.50 0.25 0.00 0.25 4 0.00 0.00 0.18 0.82

Table 7: Confusion matrices of the combined model for the staging predictor with positive-
oriented unbalanced sets on real and extended data. Row and column indices represent,
respectively, the true expected and the predicted outcomes of the model.

Performances regarding the extended reality test resulted better against the
validation. This aspect means that the combined model generalizes better ex-
tended than the real data. We also notice that, regarding real data, the least
confusing stages are I and II, while III and IV are mostly confused, respectively,455

with II and I stages. Regarding extended data, the combined model often con-
fuses III with the II stage. These results suggest the need to acquire more data
for the training or introduce a certain degree of determinism into the model.
Further medical knowledge can be beneficial to define confidence intervals for
the staging decision.460

3.3. Discussion

3.4. Comparison to the related works

4. Conclusions and future works
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O. Mäkelä, Comparison of ca 19-9 and carcinoembryonic antigen (cea) lev-565

els in the serum of patients with colorectal diseases, British journal of cancer
49 (2) (1984) 135.

[31] G. Lindmark, U. Kressner, R. Bergström, B. Glimelius, Limited clinical
significance of the serum tumour marker ca 72-4 in colorectal cancer., An-
ticancer research 16 (2) (1996) 895–898.570

[32] V. Yasasever, Z. Sengün, N. Saydan, H. Onat, N. Dalay, Serum values
of ca72. 4 in patients with gastrointestinal system tumors comparison with
cea and ca 19.9., European journal of gynaecological oncology 13 (5) (1992)
403–408.

[33] Y. Gao, J. Wang, Y. Zhou, S. Sheng, S. Y. Qian, X. Huo, Evaluation of575

serum cea, ca19-9, ca72-4, ca125 and ferritin as diagnostic markers and
factors of clinical parameters for colorectal cancer, Scientific Reports 8 (1).

[34] C. Kersten, J. Louhimo, A. Ålgars, A. Lahdesmaki, M. Cvancerova,
K. Stenstedt, C. Haglund, U. Gunnarsson, Increased c-reactive protein
implies a poorer stage-specific prognosis in colon cancer, Acta oncologica580

52 (8) (2013) 1691–1698.

[35] S.-J. Myung, Colon tumor and inflammation: is c-reactive protein possi-
ble colon tumor marker?, The Korean Journal of Gastroenterology 51 (4)
(2008) 265–268.

[36] K. H. Allin, B. G. Nordestgaard, Elevated c-reactive protein in the diagno-585

sis, prognosis, and cause of cancer, Critical Reviews in Clinical Laboratory
Sciences 48 (4) (2011) 155–170.

[37] B. E. Persson, E. St̊ahle, L. P̊ahlman, B. Glimelius, O. Nilsson, L. Lind-
holm, B. Norrg̊ard-Pedersen, J. Holmgren, A clinical study of ca-50 as a
tumour marker for monitoring of colorectal cancer, Medical oncology and590

tumor pharmacotherapy 5 (3) (1988) 165.

[38] K. Konishi, H. Yamamoto, K. Mimori, I. Takemasa, T. Mizushima,
M. Ikeda, M. Sekimoto, N. Matsuura, T. Takao, Y. Doki, et al., Expres-
sion of c4. 4a at the invasive front is a novel prognostic marker for disease
recurrence of colorectal cancer, Cancer science 101 (10) (2010) 2269–2277.595

21



[39] A. Mangano, L. Messina, S. Birgillito, F. Stivala, A. Bernardini, Complelent
and its fractions (c3-c4) pattern in subjects with msoplasia, Journal of
immunopharmacology 6 (3) (1984) 147–162.
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